Organic cation/carnitine transporter (OCTN2) interaction proteome in rat astrocytes: Role of phosphatase PP2A
نویسندگان
چکیده
MicroRNAs (miRNAs) are short, 22–25 nucleotide long transcripts that may suppress entire signaling pathways by interacting with the 3’-untranslated region (3’-UTR) of coding mRNA targets, interrupting translation and inducing degradation of these targets. The long 3’-UTRs of brain transcripts compared to other tissues predict important roles for brain miRNAs. Supporting this notion, we found that brain miRNAs co-evolved with their target transcripts, that non-coding pseudogenes with miRNA recognition elements compete with brain coding mRNAs on their miRNA interactions, and that Single Nucleotide Polymorphisms (SNPs) on such pseudogenes are enriched in mental diseases including autism and schizophrenia, but not Alzheimer’s disease (AD). Focusing on evolutionarily conserved and primate-specifi c miRNA controllers of cholinergic signaling (‘CholinomiRs’), we fi nd modifi ed CholinomiR levels in the brain and/or nucleated blood cells of patients with AD and Parkinson’s disease, with treatment-related diff erences in their levels and prominent impact on the cognitive and anti-infl ammatory consequences of cholinergic signals. Examples include the acetylcholinesterase (AChE)-targeted evolutionarily conserved miR-132, whose levels decline drastically in the AD brain. Furthermore, we found that interruption of AChE mRNA’s interaction with the primatespecifi c CholinomiR-608 in carriers of a SNP in the AChE’s miR-608 binding site induces domino-like eff ects that reduce the levels of many other miR-608 targets. Young, healthy carriers of this SNP express 40% higher brain AChE activity than others, potentially aff ecting the responsiveness to AD’s anti-AChE therapeutics, and show elevated trait anxiety, infl ammation and hypertension. Non-coding regions aff ecting miRNA-target interactions in neurodegenerative brains thus merit special attention.
منابع مشابه
Caveolin-1 - A Novel Interacting Partner of Organic Cation/Carnitine Transporter (Octn2): Effect of Protein Kinase C on This Interaction in Rat Astrocytes
OCTN2--the Organic Cation Transporter Novel family member 2 (SLC22A5) is known to be a xenobiotic/drug transporter. It transports as well carnitine--a compound necessary for oxidation of fatty acids and mutations of its gene cause primary carnitine deficiency. Octn2 regulation by protein kinase C (PKC) was studied in rat astrocytes--cells in which β-oxidation takes place in the brain. Activatio...
متن کاملFunctional expression of the organic cation/carnitine transporter 2 in rat astrocytes.
In this study, we sought to identify the transporters that mediate the uptake of L-carnitine and acetyl-L-carnitine in cultured rat cortical astrocytes. L-[(3)H]carnitine and acetyl-L-[(3)H]carnitine uptake were both saturable, and mediated by a single Na(+)-dependent transport system. Uptake of both was inhibited by L-carnitine, D-carnitine, acetyl-L-carnitine and various organic cations. Acyl...
متن کاملFunctional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter.
We have demonstrated in the present study that novel organic cation transporter (OCTN) 2 is a transporter for organic cations as well as carnitine. OCTN2 transports organic cations without involving Na(+), but it transports carnitine only in the presence of Na(+). The ability to transport organic cations and carnitine is demonstrable with human, rat, and mouse OCTN2s. Na(+) does not influence t...
متن کاملFunctional regions of organic cation/carnitine transporter OCTN2 (SLC22A5): roles in carnitine recognition.
The organic cation/carnitine transporter OCTN2 transports carnitine in a sodium-dependent manner, whereas it transports organic cations sodium-independently. To elucidate the functional domain in OCTN2, we constructed chimeric proteins of human OCTN2 (hOCTN2) and mouse OCTN3 (mOCTN3) and introduced mutations at several amino acids conserved among human, rat and mouse OCTN2. We found that transm...
متن کاملbeta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter.
Therapeutic use of cephaloridine, a beta-lactam antibiotic, in humans is associated with carnitine deficiency. A potential mechanism for the development of carnitine deficiency is competition between cephaloridine and carnitine for the renal reabsorptive process. OCTN2 is an organic cation/carnitine transporter that is responsible for Na(+)-coupled transport of carnitine in the kidney and other...
متن کامل